If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x+50=2050
We move all terms to the left:
2x^2+10x+50-(2050)=0
We add all the numbers together, and all the variables
2x^2+10x-2000=0
a = 2; b = 10; c = -2000;
Δ = b2-4ac
Δ = 102-4·2·(-2000)
Δ = 16100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16100}=\sqrt{100*161}=\sqrt{100}*\sqrt{161}=10\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{161}}{2*2}=\frac{-10-10\sqrt{161}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{161}}{2*2}=\frac{-10+10\sqrt{161}}{4} $
| 1/2(x+7)=-10 | | 3/4x=1/4x+7 | | -0.7(1.2x-20)=-8.4x+14 | | 4y+(-3+y);y=2 | | 7r-6+6r=2+4r+6+7r | | X^2-16x+93=0 | | -2x^2-40=0 | | 2/5x=1/7 | | 4x-1=7x-21 | | 5y-16+5y=4 | | -3-4m=m-5-3 | | 1/10(x+12)=−2(7−x) | | 14x+36=2x+84 | | 12.5p=1,000 | | 5a+10a=3a+6 | | -9(x+8)+80=14-10x | | 155+y=180 | | 10y-6=4 | | 3x+4x+3=146 | | -46=-6+2a | | m=40÷8 | | 8x-4(x+8)=15 | | 8h=122 | | 13-(2c+2)=2(c+2)+36 | | m/5+7=4 | | 7n+6=90n= | | 4(y-1)-7y=-46 | | 2=8-6/4z | | -2x+7+9x-4=11 | | -x/2=5.5 | | 4(y-1)-7y=46 | | 25x+7=180 |